MiniVectors: an Improved GMM-SVM Approach for Speaker Verification

نویسنده

  • Xavier Anguera
چکیده

The accuracy levels achieved by state-of-the-art Speaker Verification systems are high enough for the technology to be used in real-life applications. Unfortunately, the transfer from the lab to the field is not as straight-forward as could be: the best performing systems can be computationally expensive to run and need large speaker model footprints. In this paper, we compare two speaker verification algorithms (GMM-SVM Supervectors and Kharroubi’s GMM-SVM vectors) and propose an improvement of Kharroubi’s system that: (a) achieves up to 17% relative performance improvement when compared to the Supervectors algorithm; (b) is 24% faster in run time and (c) makes use of speaker models that are 94% smaller than those needed by the Supervectors algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minivectors: an improved GMM-SVM approach for speaker verification

The accuracy levels achieved by state-of-the-art Speaker Verification systems are high enough for the technology to be used in real-life applications. Unfortunately, the transfer from the lab to the field is not as straight-forward as could be: the best performing systems can be computationally expensive to run and need large speaker model footprints. In this paper, we compare two speaker verif...

متن کامل

A text-independent speaker verification system using support vector machines classifier

In the recent years the technology for speaker verification or call authentication has received an increasing amount of attention in IVR industry. However due to the complexity of speaker information embedded in the speech signals the current technology still can not produce the verification accuracy to meet the requirement for some applications. In this paper we introduce a new pattern classif...

متن کامل

The Robustness of GMM-SVM in Real World Applied to Speaker Verification

Gaussian mixture models (GMMs) have proven extremely successful for textindependent speaker verification. The standard training method for GMM models is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. In this work we look into the various models (GMM-UBM and GMM-SVM) and their application to speaker verification. In this paper, features vector...

متن کامل

Improved GMM-based speaker verification using SVM-driven impostor dataset selection

The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates th...

متن کامل

Utterance partitioning with acoustic vector resampling for GMM-SVM speaker verification

Recent research has demonstrated the merit of combining Gaussian mixture models and support-vector-machine (SVM) for text-independent speaker verification. However, one unaddressed issue in this GMM–SVM approach is the imbalance between the numbers of speaker-class utterances and impostor-class utterances available for training a speaker-dependent SVM. This paper proposes a resampling technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009